Star Coloring High Girth Planar Graphs
نویسنده
چکیده
A star coloring of a graph is a proper coloring such that no path on four vertices is 2-colored. We prove that every planar graph with girth at least 9 can be star colored using 5 colors, and that every planar graph with girth at least 14 can be star colored using 4 colors; the figure 4 is best possible. We give an example of a girth 7 planar graph that requires 5 colors to star color.
منابع مشابه
Star coloring planar graphs from small lists
A star coloring of a graph is a proper vertex-coloring such that no path on four vertices is 2-colored. We prove that the vertices of every planar graph of girth 6 (respectively 7,8) can be star colored from lists of size 8 (respectively 7,6). We give an example of a planar graph of girth 5 that requires 6 colors to star color.
متن کاملColoring with no 2-Colored P4's
A proper coloring of the vertices of a graph is called a star coloring if every two color classes induce a star forest. Star colorings are a strengthening of acyclic colorings, i.e., proper colorings in which every two color classes induce a forest. We show that every acyclic k-coloring can be refined to a star coloring with at most (2k2 − k) colors. Similarly, we prove that planar graphs have ...
متن کاملI, F-partitions of Sparse Graphs
A star k-coloring is a proper k-coloring where the union of two color classes induces a star forest. While every planar graph is 4-colorable, not every planar graph is star 4-colorable. One method to produce a star 4-coloring is to partition the vertex set into a 2-independent set and a forest; such a partition is called an I,F-partition. We use a combination of potential functions and discharg...
متن کاملInjective colorings of planar graphs with few colors
An injective coloring of a graph is a vertex coloring where two vertices have distinct colors if a path of length two exists between them. In this paper some results on injective colorings of planar graphs with few colors are presented. We show that all planar graphs of girth ≥19 and maximum degree ∆ are injectively ∆-colorable. We also show that all planar graphs of girth ≥10 are injectively (...
متن کاملList coloring the square of sparse graphs with large degree
We consider the problem of coloring the squares of graphs of bounded maximum average degree, that is, the problem of coloring the vertices while ensuring that two vertices that are adjacent or have a common neighbour receive different colors. Borodin et al. proved in 2004 and 2008 that the squares of planar graphs of girth at least seven and sufficiently large maximum degree ∆ are list (∆ + 1)-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 15 شماره
صفحات -
تاریخ انتشار 2008